
Linked List Implementation

Checkout LinkedLists project from SVN

Understanding the
engineering trade-offs when
storing data

}  Efficient ways to store data based on how
we’ll use it

}  The main theme for the rest of the course

}  So far we’ve seen ArrayLists
◦  Fast addition to end of list
◦  Fast access to any existing position
◦  Slow inserts to and deletes from middle of list

Q1

}  What if we have to add/remove data from a
list frequently?

}  LinkedLists support this:
◦  Fast insertion and removal of elements
�  Once we know where they go
◦  Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

Q2, Q3

}  void addFirst(E element)
}  void addLast(E element)
}  E getFirst()
}  E getLast()
}  E removeFirst()
}  E removeLast()

}  What about accessing the middle of the list?
◦  LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {
 // do something
}

Iterator<String> iter =
 list.iterator();

while (iter.hasNext()) {
 String s =
iter.next();
 // do something
}

}  A simplified version, with just the essentials

}  Won’t implement the java.util.List interface

}  Will have the usual linked list behavior
◦  Fast insertion and removal of elements
�  Once we know where they go
◦  Slow random access

LodeRunner next cycle due
next class

